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The conductance and the Fano factor in a graphene sheet in the ballistic regime are calculated. The electro-
static potential in the sheet is modeled by a trapezoid barrier, which allows one to use the exact solution of the
Dirac equation in a uniform electric field in the slope areas �the two lateral sides of the trapezoid�. Asymmetry
with respect to the sign of the gate voltage manifests the difference between the Klein tunneling and the
overbarrier transmission. The phase coherence between Klein-tunneling events in the slope areas �p-n transi-
tions� leads to conductance and Fano-factor oscillation at high negative gate voltages. The comparison of the
developed theory with the experiment supports the conclusion that the Klein tunneling was revealed
experimentally.
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I. INTRODUCTION

The Klein tunneling1 is one of the most important mani-
festations of the relativistic Dirac spectrum in graphene.2 In
this process an electron crosses a gap between two bands,
which is a classically forbidden area, transforming from an
electron to a hole, or vise versa. The Klein tunneling was
well known in the theory of narrow-gap semiconductors un-
der the name of interband or Landau-Zener tunneling. In the
framework of the band theory the electron wave function for
the states close to a narrow gap between two broad bands
must satisfy the Dirac-type equation.3 This can be demon-
strated within the model of nearly-free electrons.4,5 So the
analogy with the relativistic electrodynamics was well
known and exploited in the theory of semiconductors. For
example, Aronov and Pikus6 used the pseudo-Lorentz trans-
formation �with the Fermi velocity playing the role of the
light speed� treating the effect of the magnetic field on the
interband �Klein-Landau-Zener� tunneling. This method was
used by Shytov et al.7,8 for graphene.

One may expect to reveal evidence of the Klein tunneling
from observations of charge transport and shot noise in a
graphene sheet in the ballistic regime, which are now inten-
sively studied experimentally.9–11 Analyzing conductance
and shot noise in a ballistic graphene sheet, a commonly
accepted assumption was that under electrodes the graphene
is strongly doped. A further assumption, which simplified a
theoretical analysis, was that the level of doping changed
abruptly. This led to a rectangular potential barrier for elec-
trons in a graphene sheet.12–14 One may expect that in reality
the doping level should vary continuously. Smooth finite-
slope potential steps were analyzed theoretically for p-n tran-
sitions in graphene.15–17 A possible model for the potential
barrier might be a trapezoid shown in Fig. 1. Recently ex-
perimental investigations of transport through tunable poten-
tial barriers were reported,18–21 which focused on observed
asymmetry of the dependence of resistance on gate voltage
with respect to the sign of voltage measured from the elec-
trostatic potential of the Dirac point in the sheet center. In the
diffusive regime asymmetry was attributed to scattering by
charged impurities.22,23 In the ballistic regime asymmetry is
related with the Klein tunneling.20,21

Qualitatively the origin of asymmetry in the ballistic re-
gime is illustrated in Fig. 1. We consider the limit of a small
voltage bias, i.e., a difference of electrochemical potentials in
leads is very small. Then only the states near the Fermi level
contribute to the conductance. The small voltage bias drives
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FIG. 1. �Color online� Trapezoidal electrostatic barrier in a
graphene sheet. The thick broken solid line shows the electrostatic
potential for the case, when the Fermi level in the sheet center
crosses the Dirac point. �a� A positive gate voltage Vg shifts the
Fermi level up to the conductance band. The electron at the Fermi
level is crossing the sheet from left to right without leaving the
conductance band. �b� A negative gate voltage Vg shifts the Fermi
level down to the valence band. The electron crossing the sheet
must tunnel from the conductance to the valence band on the left
�inside the circle� and tunnel back to the conductance band on the
right. Reflected waves are not shown.
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electrons to the left and holes to the right. If the gate voltage
Vg is positive �Fig. 1�a��, the Fermi level crosses only the
conductance band of electrons. There is no classically forbid-
den zone for electrons moving above the barrier, and the
transmission of the sheet is restricted only by the overbarrier
reflection. On the other hand, if the gate voltage Vg is nega-
tive �Fig. 1�b��, the Fermi level crosses the conductance band
in the electrodes and the valence band in the sheet. The sheet
between the points, where the Fermi level crosses the border
between the two bands, is classically forbidden for electrons,
and the charge transport is realized via holes, which annihi-
late with electrons moving from the left to the area of the
slope of the width d. This is the process of the Klein tunnel-
ing. In the limit of a very steep slope �rectangular barrier� the
probability of overbarrier reflection exactly coincides with
the reflection from the band boundary.12,13 In general these
probabilities are different: the probability of overbarrier re-
flection decreases with the growth of positive Vg, while at
large negative Vg the Klein tunneling essentially restricts
transmission and reflection probability remains finite. There-
fore experimental detection of asymmetry provides evidence
of the Klein tunneling.20

For studying transport through the trapezoid barrier one
should find the electron wave function inside the slope areas
of the width d, where the electron is subjected to a uniform
electric field. The Dirac equation in a uniform electric field
has an exact solution in terms of confluent hypergeometric
functions, which was found long time ago by Sauter.24 He
used it calculating the probability of the Klein tunneling.
Kane and Blount4 gave an exact solution of the Dirac equa-
tion in terms of Weber parabolic cylinder functions, which
are directly connected with the confluent hypergeometric
functions26 used by Sauter.24 Sauter’s solution was also used
for studying p-n junctions in carbon nanotubes.25 This solu-
tion will be an essential component of the present analysis of
conductance and short noise in graphene, although exact so-
lutions are known also for other types potential barriers, e.g.,
a barrier with exponential variation in the electrostatic
potential.17 The paper presents calculations of the conduc-
tance and the Fano factor for a trapezoid potential barrier in
a ballistic graphene sheet as functions of the gate voltage. In
contrast to previous investigations focused on a single p-n
transition,15,17 the analysis addresses transmission through
the whole barrier, which depends not only on scattering at
two p-n transitions �two slopes of the barrier�, but also on
possible phase coherence between them.

Section II presents the Dirac equation for graphene and
the semiclassical analysis of the Klein tunneling. Section III
analyzes the Klein tunneling using the known exact solution
of the Dirac equation in a uniform electric field. Section IV
studies transmission and reflection of electrons propagating
across the trapezoid barrier formed in the graphene sheet by
doping. Its results are used in Sec. V for the calculation of
the conductance and the Fano factor of the sheet. The last
section �Sec. VI� is devoted to comparison with experiment
and concluding discussion.

II. DIRAC EQUATION AND SEMICLASSICAL ANALYSIS

The Hamiltonian of the graphene in the presence of the
electrostatic potential V�x�, which depends only on the coor-
dinate x, is

Ĥ = vF��̂xp̂x + �̂yp̂y� + eV�x�Î , �1�

where vF is the Fermi velocity; p̂x=−i�� /�x and p̂y

=−i�� /�y are components of the momentum operator; Î is a
unit 2�2 matrix; and �̂x, �̂y, and �̂z are Pauli matrices of the
pseudospin. The eigenstates are spinors

��x,y� = ��↑�x,y�
�↓�x,y�

� , �2�

where the components �↑↓ are amplitudes corresponding to
the eigenvalues �1 /2 of the spin matrix �z. The components
of the eigenstates with the energy � satisfy the equations

− �i
�

�x
+

�

�y
��↓ = K�x��↑,

− �i
�

�x
−

�

�y
��↑ = K�x��↓, �3�

where the inverse length K�x�= ��−eV�x�� /�vF is propor-
tional to the band energy and is positive in the conductance
band and negative in the valence band. For the further analy-
sis of the exact solution it is more convenient to perform
rotation by 90° around the axis y in the spin space, introduc-
ing the spinor

��x,y� = ��+�x,y�
�−�x,y�

� , �4�

where ��= ���↑+�↓� /�2 are amplitudes corresponding to
the eigenstates of the spin matrix �̂x. After rotation the
Hamiltonian becomes25

Ĥ = vF��̂zp̂x + �̂yp̂y� + eV�x�Î , �5�

and the amplitudes �� satisfy the equations

− i
��+

�x
−

��−

�y
= K�x��+,

i
��−

�x
+

��+

�y
= K�x��−. �6�

Before analyzing the exact solution of these equations for
linear function K�x� �see the next section� it is useful to
present a less accurate but physically more transparent semi-
classical analysis. The semiclassical solution of Eq. �6� for
the x-dependent potential is obtained from the plane-wave
solution �eikr of this equation in a constant electrostatic po-
tential assuming that the x component of the wave vector
k�kx ,ky� slowly varies in space being determined from the
condition that the total energy of the electron does not vary
in space:5
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��x,y� = ��+

�−
�

=�
1

2
+

kx + iky

2K

−
1

2
+

kx + iky

2K
	� k

kx
exp
i�x

kx�x��dx� + ikyy� ,

�7�

Since translational invariance along the y axis is not broken,
the wave-vector component ky remains constant. Here kx�x�
=�k�x�2−ky

2 and k�x�= 
K�x�
 is the modulus of the wave
vector k, which is always positive, in contrast to the inverse
length K�x�, which is positive in the conductance band and
negative in the valence band. The x component of the current
in our presentation is

jx = evF�†�̂z� = evF�
�+
2 − 
�−
2� , �8�

and the spinor is normalized to the current equal to jx
= �evF, where positive and negative signs correspond to the
conductance and the valence bands, respectively. The sign in
the valence band is negative because the group velocity has a
direction opposite to the direction of k.

One can use the semiclassical solution for the analysis of
the interband transition, which takes place for the case of
negative Vg �Fig. 1�b��. Figure 2 shows an electron moving
from the left to the right in a uniform electric field �K
=−a�x−x0��. This is a zoom in on the Klein-Landau-Zener
process inside the circle shown in the left-slope area in Fig.
1�b� and is a slightly revised version of Fig. 114 in the book
by Ziman.5 The points where kx�x�=0 are turning points of
the classical trajectory. The area x0−xc	x	x0+xc between
the turning points is classically forbidden and kx�x�
= � i�ky

2−k�x�2 is imaginary there. Here xc=ky /a. In the
point x=x0, where k�x�= 
K�x�
=0, the electron crosses the
border between states with positive and negative band ener-
gies �conductance and valence bands�. Let us call it “crossing
point.” According to the semiclassical approach, the prob-
ability of the tunneling is

TK � exp
− 2�
x0−xc

x0+xc �ky
2 − k�x�2dx� = e−
ky

2/a. �9�

This semiclassical analysis is not expected to provide an ac-
curate pre-exponential factor. But remarkably the estimation
fully coincides with the exact result given below.

III. EXACT SOLUTION FOR A UNIFORM
ELECTRIC FIELD

In the trapezoid barrier shown in Fig. 1 the electric field is
present only in slopes of the barrier. In this section we con-
sider a uniform electric field, when the linear dependence
K�x�=−a�x−x0� takes place in the whole space. This may be
considered as a limit V0� 
Vg
→� of Fig. 1�b� when the
crossing point x=x0 is very far from the point x=0 separating
the areas of the electric field and of the constant electrostatic
potential �x0 is large and negative�. The general exact solu-
tion of Eq. �6� in this case is24

��x,y� = �C1F�
,�� + C2G�
,���

C1G�
,�� + C2F�
,��� �eikyy , �10�

where 
= �x−x0��a, �=ky /�a, x0 is the coordinate of the
crossing point, where K�x�=−a�x−x0�=0,

F�
,�� = e−i
2/2M�−
i�2

4
,
1

2
,i
2� ,

G�
 ,�� = − �
e−i
2/2M�1 −
i�2

4
,
3

2
,i
2� , �11�

and

M�a,b,z� = �
n=0

�
�a�nzn

�b�nn!
,

�a�0 = 1, �a�n = a�a + 1��a + 2� ¯ �a + n − 1� �12�

is the Kummer confluent hypergeometric function26 satisfy-
ing Kummer’s equation,

z
d2f

dz2 + �b − z�
df

dz
− af = 0. �13�

The two constants C1 and C2 are determined by the boundary
conditions. According to the known asymptotics of the Kum-
mer functions,26 at large distances 
→ ��,

F�
,�� = F����e−i
2/2
i�2/2, G�
,�� = −







G����ei
2/2
−i�2/2,

�14�

where the functions

incident electron

reflected electron

hole

2x c

FIG. 2. �Color online� Klein-Landau-Zener tunneling �zoom in
on the circle in the left-slope area in Fig. 1�b��.
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F���� =
�
e
�2/8

��1/2 + i�2/4�
, G���� =

�
�e
�2/8−i
/4

2��1 − i�2/4�
�15�

satisfy the relations26


F����
2 =
e
�2/2 + 1

2
, 
G����
2 =

e
�2/2 − 1

2
. �16�

The asymptotic 
 dependence of the exact solution, Eq. �14�,
agrees with the semiclassical solution �7� after expansion of
the exponent argument in ky,

exp
i�
x0

x

kx�x��dx� + ikyy�
= exp
i�

x0

x

�a2�x� − xc�2 − ky
2dx� + ikyy�

� exp�i�
x0

x

�a�x� − xc� − ky
2/2a�x� − xc��dx� + ikyy�

= ei
2/2
−i�2/2. �17�

Thus very far from the crossing point K�x�=0 �
=0� the
electron moves parallel to the x axis and the asymptotic of
the exact solution at 
→ �� is

� = �1

0
�e−i
2/2+ikyy�C1F� � C2G�

� �

� � 0

− 1
�ei
2/2+ikyy�C1G� � C2F�

� � . �18�

We investigate the process shown in Fig. 2: an electron
moving from left either transforms after the Klein tunneling
to the electron with negative energy �a hole moving from the
right to the left� or is reflected backward. Thus at x→� �

���, the solution should transform to the semiclassical so-
lution

��x,y� =�
1

2
+

kx − iky

2k

−
1

2
+

kx − iky

2k
	� k

kx

�exp
− i�
0

x

kx�x��dx� + ikyy� → �1

0
�e−i
2/2+ikyy .

�19�

Using Eq. �18� and the identity 
F�
2− 
G�
2=1 one obtains

C1 = F�
� , C2 = G�. �20�

Then the asymptotic at 
→−� is

� =
1

tK
�1

0
�e−i
2/2+ikyy +

rK

tK
� 0

− 1
�ei
2/2+ikyy , �21�

where tK and rK are amplitudes of transmission and reflection
given by

1

tK
= 
F�
2 + 
G�
2 = e−
�2/2,

rK

tK
= − 2F�

� G�. �22�

This yields the exact probability of the Klein tunneling TK

= 
tK
2=e−
�2
, which coincides with the semiclassical result

�9�.

IV. TRANSPORT ACROSS THE TRAPEZOID BARRIER

A. Scattering at the left side of the barrier

Now let us consider electrons moving across the trapezoid
barrier shown in Fig. 1. In the area of the slope �x	0� elec-
trons are in a uniform electric field, while the area x�0 is
field free. We look for a solution, which in the field-free area
x�0 is a plane wave with the current evF. For positive gate
voltage Vg the plane wave corresponds to an electron of posi-
tive energy �K�x��0�,

��x,y� =�
1

2
+

kx + iky

k

−
1

2
+

kx + iky

k
	� k

kx
eikxx+ikyy , �23�

while for negative Vg the electron has a negative energy and
its group velocity x component has a direction opposite to
the x component of the wave vector k�kx ,ky�,

��x,y� =�
1

2
+

kx − iky

k

−
1

2
+

kx − iky

k
	� k

kx
e−ikxx+ikyy . �24�

The constants C1 and C2 in the exact solution for x	0 are
now determined from the continuity of the spinor at x=0.
Introducing the reduced gate voltage v=eVg /�vF

�a, the fit-
ting point x=0 corresponds to the argument 
=−v of the
Sauter’s solution, which is negative for Vg�0 �overbarrier
transmission� and positive for Vg	0 �Klein tunneling�. From
fitting one obtains the following expressions for C1 and C2
valid for the both signs of Vg:

C1 =
k + kx + i sign vky

2k
F��v,�� +

k − kx − i sign vky

2k
G��v,�� ,

C2 = −
k − kx − i sign vky

2k
F�v,�� −

k + kx + i sign vky

2k
G�v,�� .

�25�

Here the properties F�−
 ,��=F�
 ,�� and G�−
 ,��
=−G�
 ,�� were used.

Inserting the calculated values of C1 and C2 into Eq. �18�
one obtains the asymptotic expression at x→−� identical to
Eq. �21�,

� =
1

t1
�1

0
�e−i
2/2+ikyy +

r1

t1
� 0

− 1
�ei
2/2+ikyy , �26�

but with the amplitudes tK and rK of transmission and reflec-
tion in a uniform electric field replaced with the amplitudes
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of the transmission, t1, and of the reflection, r1, at the left
side of the trapezoid barrier,

1

t1
=

k + kx + i sign vky

2�kkx

F�v,�� −
k − kx − i sign vky

2�kkx

G�v,�� ,

�27�

r1

t1
= −

k + kx + i sign vky

2�kkx

G�v,���

+
k − kx − i sign vky

2�kkx

F�v,���. �28�

Here

F�v,�� = F��v,��F���� + G�v,��G�����,

G�v,�� = G��v,��F� + F�v,��G�����. �29�

Eventually the transmission probability at the left slope of
the trapezoid barrier is given by

T1 = 
t1
2 = 
 k + kx

2kx

F�v,��
2 +

k − kx

2kx

G�v,��
2

− sign v
ky

kx
Im�F�v,���G�v,����−1

. �30�

According to Fig. 1 the electric field is absent deep in the
electrode at x	−d. So in the point x=−d the field solution
must transform to a plane-wave solution again. However,
there is no significant reflection of the electron in this area if
the asymptotic expression Eq. �26� is valid at x=−d. Indeed,
according to Eq. �26� the electron propagates normally to the
barrier and cannot be reflected. The conditions for it are 

�
−d�
�d�a�1 and 

�−d�
��. In particular, this means that

e�V0 − Vg�
�vF

�a
�

eV0

�vF
�a

=
k0

�a
= �k0d � 1, �31�

where k0=eV0 /�vF is the modulus of the wave vector at the
Fermi level inside the electrode at x	−d. As far as this
condition is satisfied, neither k0 nor d affects the results of
the analysis, which depend only on their ratio a=k0 /d pro-
portional to the electric field in the area of the slope −d	x
	0.

Let us consider various limits of the obtained expression
for the transmission. The very steep slope �rectangular bar-
rier� corresponds to very small 
v
 and �. In this limit
F�v ,��=F��v ,��→1 and G�v ,��=G��v ,��→0, and one
obtains that transmission independent of the sign of Vg, i.e.,
the difference between the Klein tunneling and the overbar-
rier transmission vanishes,

T1 =
2kx

k + kx
. �32�

This result is valid for small 
Vg
 much less than �vF
�a /e

�
v
�1�.
Let us consider now the opposite limit of high 
Vg
 when


v
�� and

F�v,�� → �
F����
2 − sign v
G����
2�eiv2/2,

G�v,�� → 2��− v�F����G�����e−iv2/2. �33�

According to the definitions of v and �, the condition 
v

�� means that k�kx�ky, i.e., the incident electron moves
nearly normally to the barrier. Then one should keep only the
first term in Eq. �30�,

T1 =
1

�
F����
2 − sign v
G����
2�2

=
4

�e
�2/2 + 1 − sign v�e
�2/2 − 1��2
. �34�

This yields the probability of the Klein tunneling given by
Eq. �9� for negative v and ideal transmission T1=1 for posi-
tive v, i.e., for large positive v the overbarrier reflection van-
ishes.

For further calculation of the transmission of the whole
barrier one needs also to know the parameters of the process
time reversed with respect to scattering at the left slope of
the barrier. The time-reversed state corresponds to the nega-
tive current −evF �from the right to the left� and is described
in the field-free region x�0 by the spinors in Eqs. �23� and
�24� after replacing kx with −kx. Also the roles of incident
and reflected waves in the asymptotic expression Eq. �26� are
interchanged, and the transmission and the reflection ampli-
tudes for the time-reversal process are determined from those
for the original process as

1

t̃1�kx,ky�
=

r1�− kx,ky�
t1�− kx,ky�

,
r̃1�kx,ky�

t̃1�kx,ky�
=

1

t1�− kx,ky�
. �35�

B. Scattering at the right slope of the barrier

The analysis of this process is similar to that done for
scattering at the left slope: one should fit the plane-wave
solution in the field-free area x	L to the exact solution in
the region x�L of the uniform electric field, which has now
a direction opposite to that at the left slope, i.e., K�x�=a�x
−x0�. Without repeating all details we summarize here the
results.

The exact solution at the right slope is complex conjugate
to that at the left slope. Asymptotically the exact solution in
the field region is a wave propagating to x→�,

��x,y� = �1

0
�ei
2/2+ikyy . �36�

The solution in the field area x�L must fit to the solution in
the field-free region x	L, where there is a superposition of
an incident and a reflected wave, which is
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��x,y� =
1

t2�
1

2
+

kx + iky

k

−
1

2
+

kx + iky

k
	� k

kx
eikxx+ikyy

+
r2

t2�
1

2
+

− kx + iky

k

−
1

2
+

− kx + iky

k
	� k

kx
e−ikxx+ikyy �37�

for positive Vg �overbarrier transmission� and

��x,y� =
1

t2�
1

2
+

kx − iky

k

−
1

2
+

kx − iky

k
	� k

kx
e−ikxx+ikyy

+
r2

t2�
1

2
+

− kx − iky

k

−
1

2
+

− kx − iky

k
	� k

kx
eikxx+ikyy �38�

for negative Vg �Klein tunneling�. The fitting at the point x
=L gives

1

t2
= 
 k + kx − i sign vky

2�kkx

F�v,��

+
k − kx + i sign vky

2�kkx

G�v,���e−i sign vkxL,

r2

t2
= − 
 k + kx + i sign vky

2�kkx

G�v,��

+
k − kx + i sign vky

2�kkx

F�v,���ei sign vkxL. �39�

This yields the transmission probability T2= 
t2
2 equal to T1
at the left slope of the barrier.

C. Transmission through the whole barrier

1. Incoherent tunneling

The transmission through the whole barrier depends on
whether the electron can propagate inside the barrier coher-
ently without losing its original phase14 �see the phase fac-
tors e�i sign vkxL in Eq. �39��. For L long enough the phase
coherence can be lost. Then the total transmission T is com-
bined not from amplitudes but from probabilities, treating
two slopes as uncorrelated scatters. Keeping in mind that
T1=T2 one obtains27

T =
T1T2

1 − R1R2
=

T1

2 − T1
, �40�

where R1,2= 
r1,2
2=1−T1,2 are probabilities of reflection at
the left and the right slopes.

2. Coherent tunneling

If the phase correlation takes place one should look for
the solution in the electric field at x	0, which at x→−� has
the same form as Eq. �26�,

� =
1

t
�1

0
�e−i
2/2+ikyy +

r

t
� 0

− 1
�ei
2/2+ikyy , �41�

but the transmission and the reflection amplitudes are deter-
mined now from fitting to the spinors �37� or �38� in the
point x=0. This yields the following expressions for them
�compare with Eq. 9 in Ref. 16�:

1

t
=

1

t1t2
+

r̃1r2

t̃1t2

= 
cos kxL − sign v
ik

kx
sin kxL�F�v,��2

+ 
cos kxL + sign v
ik

kx
sin kxL�G�v,��2

+
2ky

kx
sin kxLF�v,��G�v,�� . �42�

This expression can also be used for the case when there are
no propagating modes in the field-free area 0	x	L, i.e., kx
is imaginary and corresponds to an evanescent state in the
classically forbidden barrier area. In this case one should
analytically continue the expression replacing sin kxL / ikx
with sinh pL / p, where p= ikx is real if kx is imaginary.

The limit of high negative voltage is especially important
for comparison with experiment. In this limit ky �k and kx
�k and, using Eqs. �14�–�16�, Eq. �42� yields

1

t
= �
F�
2 + 
G�
2�2eikL+iv2

+ 4F�
2 G�

�2e−ikL−iv2

= e
�2
eikL+iv2

+ �e
�2
− 1�ei����−ikL−iv2

. �43�

This yields the transmission probability �the Fabry-Perot for-
mula�

1

T
=

1


t
2
= 1 +

2RK

TK
2 �cos ���,v� + 1�

= 1 + 2e
�2
�e
�2

− 1��cos ���,v� + 1� , �44�

where TK=e−
�2
and RK=1−e−
�2

are the transmission and
the reflection coefficients for the Klein tunneling and the
phase ��� ,v�=����−��v� consists of two parts. The first
one is the �-dependent phase of the complex function F�

2 G�
�2:

���� = 2 arg� 
�e
�2/4+i
/4

2��1/2 + i�2/4���1 + �2/4�
�

=



2
− 2 Im�ln���1/2 + i�2/4���1 + �2/4��� , �45�

which is the phase shift after reflection from the band bound-
ary. The second part

��v� = 2kL + 2v2 = 2vl + 2v2 �46�

is the phase acquired by the particle moving forth and back
between two crossing points on the semiclassical trajectory
inside the barrier. Here l=L�a is the dimensionless width of
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the field-free zone 0	x	L, and the relation k=eV /�vF

=v /�a was taken into account. At fixed � �fixed ky� the
transmission probability T is a periodic function of the phase
��v�. In accordance with the property of the Fabry-Perot
interferometer, the transmission probability becomes periodi-
cally equal to unity, i.e., the barrier becomes transparent not
only for normal propagation of electrons and holes. This hap-
pens for the phase values �= �2n+1�
, where n is an integer.
So in the case of the coherent tunneling the transmission
probability T as a function of large v oscillates with the
period �v=
 / �l+2v� or as a function of the density ng
= �eVg /��2 /
 in the gated area, with the period

�ng =
2�
ng

L + �
ng/a
. �47�

V. CONDUCTANCE AND SHOT NOISE

A. Incoherent ballistic transport

Let us consider the case of the graphene-sheet length of L
long enough, when the contribution of evanescent modes is
not important, and there is no phase correlation between two
tunneling events at the two sides of the barrier. Then the
conductance does not depend on L and is given by

g =
g0

�a
�

0

e
Vg
/�vF

Tdky = g0�
0


v


Td� . �48�

where g0=4e2W�a /
h, W is the width of the graphene sheet,
�=ky /�a, v=eVg /�vF

�a, and the transmission probability T
is determined with help of Eqs. �30� and �40�. One may
replace the summation over transversal components ky by the
integration assuming that W exceeds all other spatial scales
�L and 1 /�a�. The Fano factor is determined by the relation

F =

�
0


v


T�1 − T�d�

�
0


v


Td�

. �49�

Solid lines in Figs. 3�a� and 3�b� show �a� the reduced
conductance g /g0 and �b� the Fano factor as functions of the
reduced gate voltage v=eVg /�a�vF. At positive Vg the con-
ductance grows roughly linearly, which is related to the lin-
ear growth of the density of the states with the voltage.

One may compare the conductance and the Fano factor
with those for a steep potential step �rectangular barrier�,
which corresponds to the limit a→�. In this limit T→kx /k
and Eqs. �48� and �49� yield14

gr =



4
g0
v
, Fr = 0.125. �50�

Note that gr does not depend on a since v��a and g0
�1 /�a. The values of gr and Fr were obtained for voltages
Vg high with respect to the voltage scale �vF /eL. However,
Fig. 3 uses the voltage scale �vF

�a /e, which is much larger
than �vF /eL for the rectangular barrier. Therefore gr and Fr

correspond to small v. The conductance gr and the Fano
factor Fr are shown in Fig. 3 with dotted lines.

The left-hand parts of the plots �negative Vg� can be also
compared with the calculations assuming that the transmis-
sion T1 of a potential step is fully determined by the Klein-
tunneling probability TK �see Eq. �9�� and T=TK / �2−TK� at
any voltage. Then the conductance and the Fano factor are

g = g0�
0


v
 d�

2e
�2
− 1

, F =

�
0


v

2�e
�2

−1�d�

�2e
�2
−1�2

�
0


v

d�

2e
�2
−1

. �51�

They are shown in Figs. 3�a� and 3�b� by dashed lines. This
approximation is similar to that one used by Cheianov and
Falko15 for a single p-n transition, but our analysis addresses
two p-n transitions in series. One can see that at large nega-
tive gate voltage Vg the conductance and the Fano factor are
well described by the process of two sequential uncorrelated
Klein tunnelings and saturate at the plateaus determined by

gK = 0.403g0, FK = 0.329. �52�

The subscript K stresses that these values are determined by
the Klein tunneling only and their observation is direct evi-
dence of the Klein tunneling.

g/g
0
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2.0

F

FIG. 3. �Color online� The plots �solid lines� of �a� the reduced
conductance g /g0 and �b� the Fano factor F vs reduced gate voltage
v=eVg /�a�vF for incoherent transport. The dashed lines show the
results of simplified calculations approximating the transmission
probability at negative Vg with the probability of the Klein tunnel-
ing in a uniform electric field. The dotted lines show �a� the con-
ductance and �b� the Fano factor for vertical slopes �rectangular
barrier� at voltages �vF

�a /e�Vg��vF /eL.
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As mentioned above, the content of this section refers to
very large L. However this approach at some L large enough
can fail because of scattering by disorder. Thus the validness
of the approach is restricted with the window �vF /eVg�L
� l, where l is the mean-free path determined by disorder.

B. Coherent ballistic transport

In the coherent transport the total transmission amplitude
and probability do depend on the length L of the field-free
region. For finite length L the evanescent states participate in
the transport, and in the expressions for the conductance and
the Fano factor �Eqs. �48� and �49��, one must replace the
upper limit 
v
 in the integrals with �. The transmission T
= 
t
2 in these expressions is now determined by Eq. �42�. The
numerically calculated �a� reduced conductance and �b� Fano
factor as functions of v are shown for l=L�a=0 �curve 1�
and l=1 �curve 2� in Fig. 4. In the limit L�a→0 the barrier
transforms from trapezoid to triangular. As well as in Fig. 3,
dashed lines in Fig. 4 show dependences for the double un-
correlated Klein tunneling. One can see that at negative Vg
the conductance and the Fano factor for the coherent trans-
port oscillate around the “Klein” plateaus derived for inco-
herent transport.

The oscillation of the conductance and the Fano factor do
not decay with increasing 
v
� 
Vg
 and are strictly periodic
with respect to the semiclassical phase ��v� introduced in

Eq. �46�. The dependences on �, which were obtained with
help of the asymptotic expression �44� for the transmission
probability of T, are shown in Fig. 5 within one 2
 period.
The dependences are strongly inharmonic; nevertheless, the
average value of the conductance g practically coincides
with the Klein conductance gK=0.403g0, which corresponds
to the plateau for the incoherent tunneling. In contrast, the
averaged Fano factor, which is equal to 0.26, is less than the
Fano factor FK=0.329 at the Klein plateau. This is easily
seen in Fig. 4�b�.

The plots given above used the scales connected with the
length scale 1 /�a, which is determined by the slope only.
This length is more useful until it is larger than L, i.e., for not
too steep slopes. However, in the opposite case of steep slope
�a barrier close to rectangular� the length scale L might be
more useful. Then it is convenient to use the minimal con-
ductance for a rectangular barrier G0=1 /R0=4e2W /
hL as a
conductance scale and �vF /eL as a voltage scale. Figure 6
shows the plots of the reduced resistance R /R0 as a function
of the dimensionless voltage vl=vL�a=eVgL /�vF for three
values of L�a=�, 10, and 5 �curves 1, 2, and 3, respec-
tively�. At high negative voltage the resistance oscillates
around the Klein resistance,

RK =
1

gK
=


h

1.612e2W�a
=

R0

0.403L�a
=


h�d

1.612e2W�
n0�1/4 ,

�53�
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FIG. 4. �Color online� The plots of �a� the reduced conductance
g /g0 and �b� the Fano factor F vs reduced gate voltage v
=eVg /�a�vF for coherent transport. Solid lines: 1−L�a=0 and 2
−L�a=1. The dashed lines show simplified calculations based on
the probability of the Klein tunneling in a uniform electric field.
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FIG. 5. �Color online� The asymptotic periodic dependence of
�a� the reduced conductance g /g0 and �b� the Fano factor F on the
semiclassical phase � for coherent transport. The dependence is
plotted within one 2
 period.
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where n0=k0
2 /
= �eV0 /�vF�2 /
 is the charge density in elec-

trodes. The ratios RK /R0 for L�a=10 and 5 are shown in Fig.
6 by horizontal dashed lines 2 and 3, respectively. For a
rectangular barrier �L�a→�� the Klein resistance RK van-
ishes.

Figure 7 shows the dependence of the odd part of the
resistance Rodd= �R�−v�−R�v�� /2 on the reduced voltage vl

for two values of L�a=10 �curve 1� and 5 �curve 2�. At
L�a=� the dependence is symmetric and Rodd vanishes. At
high voltages 2Rodd approaches to the total resistance R os-
cillating around the Klein resistance.

VI. DISCUSSION AND COMPARISON
WITH EXPERIMENT

The odd part of the resistance was examined experimen-
tally in Refs. 18–20 �see Fig. 3 in Refs. 18 and 20 and Fig. 2
in Ref. 19�. There are some similarities between experimen-
tal and theoretical curves in Fig. 7: the majority of experi-
mental curves at high voltages also oscillate around some
constant asymptotic values. The constant asymptotic value
may be considered as the Klein resistance defined in our
analysis as the resistance at the plateau of the plot “resistance
vs voltage” obtained for incoherent tunneling. This supports
the claim of Stander et al. that they found evidence of the
Klein tunneling. It is worthwhile to note that the appearance
of Klein plateaus on theoretical curves is sensitive to the
choice of the model: a plateau can appear under the assump-
tion that the electrical field inside the transient area of the
slope does not vary. The assumption can be true only if the
gate voltage Vg is not too close to the voltage V0, which
determines the height of the potential step �see Fig. 1 and
discussion of Eq. �31��. The presence of plateaus on experi-
mental curves demonstrates that this assumption is not so
bad. When the gate voltage approaches to V0, the average
resistance should decrease.

Let us consider the experimental dependence of the Klein
resistance RK �average resistance at the plateau� on the elec-
tric field using the data for the sample shown in Fig. 3a of
Ref. 20. If the width d of the transient area of the slope is
fixed, the electric field is proportional to V0, with the latter
being related to the charge density n0 in the electrodes. In the
experiment n0 changes from 1.2�1012 to 4.7�1012 cm−2.
According to Eq. �53� RK�n0

−1/4 must decrease in 1.4 times
while in the experiment the plateau resistance decreases in
about 1.6 times. A quantitative comparison of absolute val-
ues of the resistance is not straightforward because of the
lack of information on the experimental value of the width d
of the slope area �the width of the p-n transition�. Choosing
the distance between the top gate and the graphene sheet as a
rough estimation for d �34 nm for the sample under consid-
eration�, for n0=4.7�1012 cm−2, Eq. �53� yields a resistance
of 0.110 k� against about 0.125 k� in the experiment.

A clear picture of the Fabry-Perot interference in the
graphene-sheet conductance was observed by Young and
Kim.21 In their Fig. 3�b� the period of the conductance oscil-
lation changes by not more than 20% when the density ng
= �eVg /�vF�2 /
 in the gated region �n2 in their notations�
increases by four times. If the phase shift were accumulated
only in the field-free area of the length L, Eq. �47� would
predict a two-time increase in the period. A weaker growth of
the period is evidence that the field-dependent phase shift in
the area of the electric field �p-n transitions� is essential.
Indeed, according to Eq. �47�, the period �ng does not de-
pend on ng if L��
ng /a. The oscillation amplitudes in the
experiment are evidently smaller than in the theory for co-
herent tunneling presented in this work. This is an effect of
disorder, which was analyzed by Young and Kim.21 How-
ever, the disorder is not expected to affect the oscillation
period and the observed conductance oscillation is clear evi-
dence of the Klein tunneling through the two p-n transitions
forming a Fabry-Perot interferometer.

To conclude, the paper presents calculations of the con-
ductance and the Fano factor in a graphene sheet in the bal-
listic regime. The electrostatic potential in the sheet is mod-
eled by a trapezoid barrier, which allows one to use the exact
solution of the Dirac equation in a uniform electric field in
the slope areas �the two lateral sides of the trapezoid�. A
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FIG. 6. �Color online� The plot of reduced resistance vs reduced
gate voltage vl=eVgL /�vF for coherent transport. Curves 1, 2, and
3 �solid lines� correspond to the values L�a=�, 10, and 5, respec-
tively. The dashed straight lines 2 and 3 show the values of RK /R0

�see Eq. �53�� for L�a=10 and 5 around which the resistance oscil-
lates at high negative voltage. In the case of L�a=�, the Klein
resistance RK vanishes.
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FIG. 7. �Color online� The plot of reduced odd resistance vs
reduced gate voltage vl=eVgL /�vF for coherent transport. Curves 1
and 2 correspond to the values L�a=10 and 5, respectively.
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special attention is devoted to asymmetry with respect to the
sign of the gate voltage, which is connected with the differ-
ence between the Klein tunneling and the overbarrier trans-
mission. The asymptotic resistance for high negative gate
voltage, when an electron crosses two p-n transitions in se-
ries, is determined by the process of the Klein tunneling. The
phase correlation between Klein-tunneling events at two
slopes of the barrier �p-n transitions� leads to oscillations of
the conductance and the Fano factor at high negative gate
voltages. The comparison of the asymptotic average conduc-

tance �Klein conductance� and the conductance oscillation
with the experiments supports the conclusion that the Klein
tunneling was revealed experimentally.
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